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The formalism of partial differential equations with respect to coupling constants 
is used to develop a covariant perturbation theory for the interpolating fields and 
the S matrix when the coupling terms in the Larangian density involve arbitrary 
(first and higher) derivatives. Through the notion of pure noncovariant contrac- 
tions, the free-field T and the (covariant) T* products can be related to each 
other, allowing us to avoid the Hamiltonian density altogether when dealing with 
the S matrix. The important ingredients in our approach are (!) the adiabatic 
switching on and off of the interactions in the infinite past and future, respectively, 
and (2) the vanishing of four-dimensional delta functions and their derivatives 
at zero space-time points. The latter ingredient is a prerequisite that our formal- 
ism and the canonical formalism be consistent with each other, and on the other 
hand, it is supported by the dimensional regularization. Corresponding to any 
Lagrangian, the generalized interaction Hamiltonian density is defined from the 
covariant S matrix with the help of the pure noncovariant contractions. This 
interaction Hamiltonian density reduces to the usual one when the Lagrangian 
density depends on just first derivatives and when the usual canonical formalism 
can be applied. 

1, I N T R O D U C T I O N  

Theor ies  with h igher  der ivat ives  ( second and higher)  in the Lag rang ian  
dens i ty  can occur  qui te  na tu ra l ly  in va r ious  areas  o f  physics  (Berna rd  and  
Duncan ,  1975; Simon,  1990; Ba rua  and  G u p t a ,  1977). F o r  example ,  in the 
t r ea tmen t  o f  h igher  spin fields with the use o f  ghost  fields, the h igher  der iva-  
tive coupl ings  are  unavo idab l e  (Barua  and G u p t a ,  1977). A n o t h e r  example  
o f  a theory  with h igher  der ivat ives  occurs  in general  re la t ivi ty  where quan-  
tum cor rec t ions  con ta in  h igher  der ivat ives  o f  the  metr ic  (Birrel and  Davis ,  
1982), or  where  non l inea r  s igma mode l s  o f  s tr ing theory  predk, t  terms o f  
o rde r  R 2 or higher  (Berna rd  and Duncan ,  1975; S imon,  1990; de Alwis,  
1986). O f  course ,  the classical case o f  a theory  with higher  der ivat ives  is 
D i rac ' s  (1938) relat ivis t ic  mode l  o f  the rad ia t ing  electron.  
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The canonical formalism for fields with higher derivatives in the free 
part of the Lagrangian density has been discussed rather extensively 
(Bernard and Duncan, 1975; Simon, 1990). In this article we deal with the 
situation where the free part of the Lagrangian density involves only first 
derivatives and the coupling terms contain higher derivatives. Now, from 
the interaction Lagrangian with higher derivatives one can remove second 
and higher time derivatives by carrying out either covariant or noncovariant 
field transformations (Barua and Gupta, 1977), so that the transformed 
Lagrangian contains only higher space derivatives which (with suitable defi- 
nitions of canonical momenta) yields the Hamiltonian density. This proce- 
dure, however, is very model dependent and, as a rule, yields a rather 
complicated Hamiltonian density, which in turn yields a rather complicated 
expression for the scattering (S) matrix. It is clear that in order to treat a 
general case of higher derivative couplings, one has to formulate a theory 
that goes beyond the canonical formalism. We believe that such a theory 
can be formulated through the formalism of partial differential equations 
with respect to coupling constants (PDECC) (~oln, 1972, 1978), which has 
been used in the formulation of the covariant perturbation theory for chiral 
Lagrangians (~oln, 1973). However, unlike earlier work (~oln, 1972, 1973, 
1978), here the formulation of the covariant PDECC formalism will be done 
without the Hamiltonian density. 

A rather compelling reason for developing the S-matrix formulation in 
which the knowledge of the Hamiltonian density is not necessary is the 
difficulty in showing the Lorentz invariance itself. Namely, when tackling 
the question of the Lorentz invariance of the S matrix within the canonical 
formalism for a Lagrangian density with higher derivatives, one needs to 
know the corresponding Hamiltonian density, which, however, quite gen- 
erally, if it can be written at all, is a very complicated noncovariant 
expression (and seldom can be written in a closed form). Furthermore, when 
a term in the Lagrangian density contains more derivatives than fields, the 
Hamiltonian density does not exist until auxiliary fields are introduced, as 
originally noted by Ostrogradsky (1850). 

The covariant PDECC formalism developed here to treat fields and the 
S matrix, when the free part of the Lagrangian density involves only first 
derivatives and the coupling terms contain higher derivatives, is consistent 
with the so-called Lehman-Symanzik-Zimmermann (LSZ) field theory for- 
mulation (Lehman et al., 1955), which assumes that the free fields satisfy 
the usual differential (Klein-Gordon, Dirac) equations. Also, as in the LSZ 
formulation, we take that the constant of motion means a field quantity 
which commutes with the S matrix. The derived covariant S matrix will 
satisfy automatically the naive version of Matthews' (1949) theorem to all 
orders in a perturbation theory. This should be contrasted with the fact that 
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within the canonical formalism, which relays on the S matrix given as a T 
product in terms of the interaction Hamiltonian density, one can only conjec- 
ture but not actually prove (even for Lagrangians with no more than one 
derivative acting on each field) that the naive version of Matthews' theorem 
is correct in a perturbation theory (Bernard and Duncan, 1975). Here, the 
naive version of Matthews' theorem means: The Feynman rules are the ones 
obtained by using the interaction Lagrangian to determine the vertices and 
the covariant T* product (Nishijima, 1969) to determine the propagators 
(Bernard and Duncan, 1975). 

The main reason we can avoid the Hamiltonian altogether within our 
covariant PDECC formalism is because by introducing the pure noncovari- 
ant T, product (with the corresponding pure noncovariant contractions) we 
can transform directly a T product into a covariant T* product (and vice 
versa). The adiabatic switching on and off of interactions in the infinite past 
and future, respectively, is explicitly assumed in our covariant formalism; 
this allows us to verify that the derived covariant S matrix indeed connects 
properly the asymptotic field quantities at the infinite past and the future. 
The vanishing of the four-dimensional delta function (Bernard and Duncan, 
1975; Barua and Gupta, 1977; Capper and Liebbrandt, 1973, 1974; Tataru, 
1975; 't Hooft and Veltman, 1972) and its derivatives at zero space-time 
points is yet another important ingredient in the covariant PDECC formal- 
ism. This ingredient is actually a physical necessity, as otherwise the canon- 
ical formalism (for Lagrangian densities with first derivatives) and the 
covariant PDECC formalism would not be consistent with each other. Of 
course, on the formal level, the vanishing of the four-dimensional delta 
function and its derivatives at zero arguments can be justified with the dimen- 
sional regularization ('t Hooft and Veltman, 1972). 

Although in the covariant PDECC formalism one does not need the 
Hamiltonian density, nevertheless, with the help of pure noncovariant con- 
tractions from the explicitly covariant S matrix, we can define the generalized 
interaction Hamiltonian density for an arbitrary Lagrangian density. For a 
Lagrangian density with first derivatives, this interaction Hamiltonian 
density reduces to the one that is derived from the canonical formalism. 

In Section 2 the algebra of time-ordered products is developed. Here 
the T and T* products are connected through (pure noncovariant) Tn pro- 
ducts. The covariant version of the PDECC formalism, with the arbitrary 
derivative coupling terms in the Lagrangian density, for the S matrix and 
interpolating field quantities is developed in Section 3. Here the explicitly 
covariant S matrix, the covariant PDECC for interpolating fields, as well as 
the generalized Hamiltonian density are given. Section 4 is devoted to treat- 
ing some specific examples with an emphasis on analysis of the derived 
Hamiltonian densities. The results are discussed in Section 5, where the 
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conclusion is also given. In Appendix A we give pertinent examples of  T. 
contractions. Some outlines of  dimensional regularization are discussed in 
Appendix B and some PDECC relations for theories with canonical Hamil- 
tonians are explained in Appendix C. 

2. ALGEBRA OF TIME-ORDERED PRODUCTS 

In the formulation of the covariant PDECC, the algebra of T (covari- 
ant) T*, and (noncovariant) 7". products play very important roles, so this 
whole section is devoted to it. 

According to ~oln (1973) and Nishijima (1950, 1969), a T* product of 
free fields is defined as 

) 0; ) ) \\Oxm axe,2''' ~f(x) ~, Oy~---~''" ~ f (Y) ' ' "  

(,  o ) 
= ax., ax.~ Oy~---~ . . . . . .  T(q~s(x)dpf(Y)'" ") (2.1) 

where ~b s (meaning either ~bin o r  q~ou,) denotes a set of independent free fields. 
It is immediately evident from (2.1) that T and T* contractions between 
free field ~by operators are different, for while T contractions may not be 
covariant objects in general, the T* contractions always are. Let us take a 
simple case of a T contraction involving scalar fields carrying some internal 
(isospin, etc.) indices a and b: 

auc~j(x)'Ovdp}(y)'=<O;fIT~, q~f~(x -~y dpj 0 b (y)[ 0 ; f> 

= [a. ~hT: (X) avq~" (X)]* -- in~,nva,,bg4(x --y) (2.2a) 

where the first term is the T* contraction, 

[O,c~p(x)" Ov~b:@r,)'l* = <0 ; f iT  * Ox~ (aT(x) ~r (y)l , f>  

O _~8 AF(x_y)g .b  (2.2b) 
Ox. ay~ 

Here the notation is such that a state ]. . .  ; f>  means either an "in" ( f = i n )  
or an "out"  ( f = o u t )  state. We see that (2.2a) and (2.2b) differ by the 
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noncovariant (normal-dependent) term nunv34(x-y). Equations (2.2) sug- 
gest the definition o f  pure noncovar ian t  contract ions  for ~b 7 fields as 

[~b7 (x)'~bfb (y) ' ]"  = 0 

[0~, ~b~ (x)'~by b (y) ' ]"  = [~b 7 (x)" Ov~by b (y) ' ]"  = 0 (2.3) 

[ 0 ~  (x)" 0v~fb (y) ' ]"  = -- in~nv~ab~4(x - - y )  

with other  pure noncovar ian t  contract ions  given in Appendix A. 
Relations (2.2) and (2.3) suggest that  we write the T product  as 

(~oln, 1973) 

T =  T * T ,  (2.4) 

where T, ,  a symbolic nota t ion for the noncovar ian t  T product ,  means:  
When T, acts on a p roduc t  involving ~b I operators ,  one sums up all possible 
(including the zeroth)  pure noncovar ian t  contract ions  according to (where 
li ,  2r . . . .  , is a shor t -hand nota t ion for free q~y operators)  

T , ( I f  2~. .  �9 '7) = 1s 2r" " " '7 + [1)2)]"3/- �9 �9 '7 

+[1~-3~]"2f..- r f+" . . + [172)]"[3)4~]"5f. ' .  r f+" . . (2.5) 

[In ~oln (1973) the symbol T, is equivalent to T * T ,  here. This is why T, 
products  f rom that work and here differ by T* products.]  The action of  the 
inverse o f  T, ,  T, -1 , clearly is 

T ~ ' ( l f 2 f .  �9 �9 rf)  = l f 2 f .  �9 �9 , ? -  [ 1)2)]"3f. �9 �9 rf  

- �9 �9 r: . . . .  

+ (-)2[1)2)]"[3~4)]"5:- - - rf  + . . .  (2.6) 

One easily verifies that  T , T - ~ ( l f 2 f  . .  . ) =  T 2 ~ T , ( l f 2 f  . .  . ) =  l f 2 f . . . ,  which 
on the formal  level can be stated as 

T / T ~ - ' = I ,  s = •  (2.7) 

where, for  carrying out  actual pure noncovar iant  contractions,  we have 
in t roduced the nota t ion 

T / =  exp[s/V:], s = • I (2.8a) 

Here,  the action o f  iV: means summat ion over only bilinear pure noncovari-  
ant contract ions  (s = • 1) : 

s N f f l f 2 f . . ,  r:) = s[1)2)]"3:- �9 �9 rf  + ' . .  + s [ ( r - 1 ) ~ 6 ] " l f .  �9 " ( r - 2 ) f  

N c ( N y l j 2 s . . -  rz)= [1)2}1"[3}4}]"5y. - . r f + . .  ", etc. 

( 2 8 b )  



586 ~oln 

One easily verifies the equivalence of relations (2.8) with relations (2.5) and 
(2.6). Now, with the help of (2.8a), from (2.4) we obtain 

T* = T T ~  1 (2.9) 

We see that while relation (2.4) yields a T* product from a T product after 
carrying out Tn contractions, relation (2.9) yields a T product from a T* 
product after carrying out T~ 1 contractions. 

A note of caution: While the factors within T and T* products can be 
rearranged at will (taking into account the statistics of field operators), 
within a T /  product this cannot be done if a T /  product stands alone. 
However, we can also rearrange the factors within a T/  product, if T," 
multiplies T or T* from the right [compare with (2.4) and (2.9)]. 

Next, since the T* product is evaluated by means of pure covariant T* 
contractions, we have to demand 

T /T* ( l s2 s . . .  J?)= T*(ls2s-- .  rs), s = •  (2.10) 

or symbolically 

T, ST * = T*, s=  4-1 (2.1 l) 

But, applying T / t o  T* from (2.9), we see that we must also have 

T / T =  T, s=  +1 (2.12) 

Applying T to relation (2.9) and taking into account that formally T T =  T, 

we obtain 

T T *  = T* (2.13) 

Taking the square of relation (2.9), with (2.12) and (2.13) taken into 
account, we also deduce that 

T ' T * =  T* (2.14) 

Combining (2.14) with (2.4), we finally have 

T * T =  T (2.15) 

Relations (2.11)-(2.15) are simply invariance statements for T and T* pro- 
ducts under the actions of T/ ,  T, and T*, respectively; the only way the T 
and T* products can be transformed into each other is through relations 
(2.4) and (2.9). However, this is not the end of the story. Namely, we know 
that T and T* products are expressible in terms of normal-ordered products 
through T and T* contractions, respectively. Denoting symbolically a 
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normal-ordered product by ::, from relations (2.11)-(2.15) we conclude 
that :: formally has the following properties: 

T : : =  :: (2.16) 

T * : : =  :: (2.17) 

Tf l : '=  ::, s=4-1 (2.18) 

These relations are also simply invariance statements for the normal-ordered 
product under the actions of  T, T*, and Tfl. 

Next we write down some rules for evaluating Tfl (s= + l )  products. 
Let us introduce a common symbol, T ~ ) ( a = 0 ,  *, s = •  3), for all 
products: 

T (~ = T, T ~*) = T*,  T (~) = T,  s 
(2.19) 

T t2) = �9 ", T (3) = 1 

where, for example, T ~2) 1.r2r = :ly2 s :, T ~3) 1r2 i = ly2 r, etc. Let Ar = 1.r2y" " " ,  
= 1:2) . . ,  etc. ; then specifically f f t . 

T.*A:Bf= Tfl(A/; Bf)(TflA:)(T.*Bf), s = :El (2.20) 

Here T,S(Aj; By) generates Tfl contractions (starting with the zeroth contrac- 
tion) only between .4: and BI, and, consistent with relations (2.8), it can be 
written as 

Tfl(Af; B : ) = e x p [ s N ( A f ;  By)], s = • (2.21a) 

where, in general, 

s N  ( A:  ; B:)( T<~) A:)( T~e) B:) 

=s[l':l:]"(T<~)2f3: .. -)(T<n)2k3) .. .) + . - .  

S 2 

-- N2(Af; Bf)(T{")Af) (T~n)B:)  (2.21b) 
2! 

=II '~l:]"[2)2k'1"(T<~ "- -) + ' ' ' ,  etc. 

s = •  

We extend relation (2.20) by adding another factor Cs: 

T,*AeByCf= T / (  AIB f  ; Cy)( TflAyBy)( T / C f  ) 

= T/(Ay; BfG)(TflAf)(T.SBfCf) 

- T/(&; 8:)T:(&; C:)T:(&; C:) 

x T,*(AT)(Tf lBI)(Tf lCf)  , s =  4-1, (2.22c) 

(2.22a) 

(2.22b) 
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giving 

T."(a:; ~ :G)  = r : ( ~ : G ;  A:) 

=Tfl(Ay;By)Tfl(Af; Cf), s=  : t :1  (2.23a) 

Tfl(Ay; By) = Tfl(By; A:), s = 4-1 (2.23b) 

Relations (2.23) give a recipe for writing down the Tfl product with an 
arbitrary number of factors. As a consequence of relations (2.11), (2.12), 
and (2.18), we have the following important relations (s= +1) 

Tfl(TAf)(TBf)Cf = Tfl(Af ; B:Cf)T,{(Bf ; Cf) 

x (TAf)(TBf)(TC:) (2.24a) 

T:(T*A:) (T*B:)G = T:(A:; B:G)T:(B:;  G )  

x (T 'A:)  (T*By)(TflCf) (2.24b) 

T,S(TAf)(T*Bf)Cf = T,~(Af ; BfCf)T,'(Bf ; Cf) 

x (rA:)(T*B:)(r.'C:) (2.24c) 

r::A:: :8: :G = r:(A:;/~:G) 

x T:(B:; G):A:::B::(T:Q) (2.24d) 

T: :A::(TB:) G = T:(4:; 8: G) 

xT:(a: ;  G):&:(TB:)(T,'G), etc. (2.24e) 

Relations (2.24) explicitly exhibit the fact that Tfl does not generate pure 
noncovariant contractions within Tfl, T, T*, or :: products. 

We wish to argue that because the symbol T can be inserted at arbitrary 
places within the T product, the symbol T* can also be inserted at arbitrary 
places within the T* product. To show this, we look first at 

T*AfBf = TT~'AfBf = TT~I(A:; BT)(Tn'Af)(T~'Bf) (2.25a) 

= TT~'(Af; Bf) (T~'A:) T(T~IBf) (2.25b) 

where in (2.25a) we took into account (2.20), while in (2.25b) we inserted 
the symbol T into all terms with pure noncovariant (including the zeroth) 
contractions generated by T~l(Af; By). On the other hand, we can look at 

T* Af T* BT= TT~' AT( TT~t Bf ) (2.26a) 

= TT~I(A:; Bf)(T~'Af)T(T~IBf) (2.26b) 

where in (2.26b) we took into account that T2~T=T. Comparison of 
(2.25b) with (2.26b) yields 

T*AtB f = T*AfT*Bf (2.27) 
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By changing, for example, B i ~ BiCiin (2.27), one easily argues that indeed 
the T* symbol can be inserted at arbitrary places within the T* product 
itself. Actually, this should not be surprising, since the T* symbol can be 
viewed as a covariant time-ordered operator, as opposed to T, which is the 
usual (noncovariant) time-ordering operator. 

It should not be surprising that for the T product we can write down 
relations similar to relations (2.20), (2.22), and (2.23). The simplest one is 

TAfBf = r(Af  ; Bf)( TAy)( TBI) (2.28) 

One interpretation for T(Af; By) in (2.28) is that, after having done T con- 
tractions (including the zeroth ones) within A i and By, one still has to do all 
possible (including the zeroth) contractions between Af and Brwhen reducing 
TAfBf into a sum of normal products. Another interpretation of T(Af; By) 
is that, after the factors within Af and By have been time-ordered, T(Ay; By) 
now time-orders (TAy)(TBy), in such a way, however, that the relative orders 
of factors from TAfand the relative order of factors from TB r do not change. 
This interpretation will be very useful later on. Clearly we can generalize 
(2.28) by adding another factor, 

TA f ByCf = T( Af Bf ; Cf )( TAI Bf ) ( TCf ) (2.29a) 

= T(Af; BfCf)( TAf)(TBf Cf) (2.29b) 

T(Ay; ByC:) = T(BsC:; Ai) = T(AI; BI)T(Ay; Ci) (2.29c) 

T(Af ; By) = T ( B f  ; A f )  (2.29d) 

and so on. 
Combining the relation (2.20) with (2.28) and relations (2.22) and 

(2.23) with (2.29), we immediately have 

T*AIB:= T*(Af ; Bf)(T*Ar)(T*Bf) (2.30) 

r*AfBfCf= T*(A:Bf ; Cf)(r*AfBf)(r*cf)  (2.31a) 

=T*(A:;  B/Cf)(T*AI)(T*B:CI), etc. (2.31b) 

where 

T*( AI ; Br) = T( Ar ; Bs) Ts Ar ; By) (2.32a) 

T*(Ar; BfC:) = T*(BfC:; As) = T*(Af ; Bi)T*(AI; Cs) (2.32b) 

T*( A f ; Br) = T*( BI ; At) (2.32c) 

Here we can make similar interpretations for T* products. Clearly, relation 
(2.30) means that after having done T* contractions (including the zeroth 
ones) within A s, and By, T*(Af; By) generates all possible contractions 
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(including the zeroth one) between Af and B i when reducing T*AyB i into a 
sum of normal products. On the other hand, we can call T* = TT~' a covari- 
ant time-ordering operator. Then the interpretation of T*(AI; Bi) is that, 
after having covariantly time-ordered factors within A i and B i, T*(AI; Bi), 
now covariantly time-order (T*AI)(T*BI) with the stipulation that the 
relative orders of factors from T*AI, as well as from T*Bs, do not change. 

Finally, let us discuss T and T* products at single space-time point x. 
Suppose we have Qy(x, y) = ( O ~ f ( x ) ) ( O v ~ f ( y ) ) .  Then, because a T product 
is undefined at equal times, it is ambiguous as to what TQi(x ) is, where 
Qi(x)==-Qr(x, x). However, we can look for some physical principles 
to define in general TAf(x), where Af(x) depends on ~f(x), Ou~f(x), 
auav~i(x),.... In the next section we shall see that the definition 

TAr(x):= As(x ) (2.33) 

is consistent with the requirement that the S matrix derived from the canon- 
ical formalism be consistent with our explicitly derived covariant S matrix. 
Next, applying either T* or T," ( s = + l )  to (2.33), with the help of (2.15) 
and (2.12), we also obtain 

T*Af(x) = Al(x) (2.34) 

r,~Ay(x) =AI(x ), s=  +1 (2.35) 

The immediate consequence of relation (2.35) is that, with noncovariant 
contractions as outlined in (2.2a) and in Appendix A, it generally requires 

~4(0) =0  (2.36a) 

(OuS4)(O) = 0, (O,0v~,)(0) = 0 . . . .  (2.36b) 

For example, (2.36a) immediately follows if one chooses for Ai(x), 
(O,c~,(x))(O~cpb(x)) [compare with (2.2a)] or ~b,(x) O,O~dpb(X) (compare with 
Appendix A). Relation (2.36a) has been proven by means of dimensional 
regularization (Simon, 1990; Barua and Gupta, 1977; Capper and Lieb- 
brandt, 1973, 1974; Tataru, 1975; 't Hooft and Veltman, 1972). However, 
as shown in Appendix B, the dimensional regularization also gives relations 
(2.36b). We shall assume the validity of relations (2.33)-(2.36) throughout 
this article. 

3. COVARIANT PDECC FORMALISM INVOLVING 
LAGRANGIAN DENSITY ONLY 

Our aim is to develop the covariant PDECC formalism for the S matrix 
and the interpolating (Heisenberg) fields when the Lagrangian density is of 
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the form 

~CF(X) = ~r -t- ~ ' i n t ( X )  ~ , ~ ( X ;  g )  (3 .1  a )  

~o(X) - ~ o ( r  (x). 0 u ~b (x)) (3.1 b) 

~i , , (x )  - ~ i~162  (x), G r  (x), G0vr ( x ) , . . .  ; g) 

- ~ i , , (x ;  g), ~7~,,(x, 0 ) = 0  (3.1c) 

Here r (x) denotes a set of independent interpolating fields corresponding 
to the system of interacting particles; they are assumed to interact through 
many independent interactions which are characterized by coupling con- 
stants gl ,  g2, - �9 �9 , denoted here as vector g = (gl, g2 . . . .  ).  The asymptotic 
free field operators ~):(x) [=~bin(x), ~bout(X)] correspond also to a similar set 
of independent asymptotic free field operators. Now, consistent with the 
adiabatic switching on and off of the interaction, to each ~q~int(xi), or equiva- 
lently, to each coupling constant vector g, we attach an adiabatic factor 

e ( x i ) = e x p [ - e l n ' x i [ ] ,  e ~ + 0  (3.1d) 

where the e ~ +0 limit is taken after pertinent manipulations have been 
carried out. When necessary, the adiabatic factor will be written out explic- 
itly. Before we undertake the covariant PDECC formulation for interpolat- 
ing fields and the S matrix, let us specify what one expects from the S matrix. 
If  we have ( f =  in, out) 

F f ( x ,  y . . . .  ) =  F( r  O.,r~:(x), 3mOu2r ) . . . . .  

Cf(y). O.,(af(y) ,  0 . , 0 . 2 r  ) . . . .  ;g) (3.2) 

expressible as a Taylor series in its arguments and in which the differences 
between any of the times tx, ty. . . . .  are finite, then we should have 

Fo,~t(x, y . . . .  ) = S*(g)Fi,(x, y . . . .  )S(g) (3.3) 

On the other hand, if we time-order Fi,(x, y . . . .  ) in (3.3), then the left side 
of (3.3) becomes time-ordered also, which means 

TFout(x, y ,  . . .) = S t ( g ) (  TF~,,(x, y . . . .  ))S(g) (3.4) 

Suppose now that at the beginning Fy(x ,  y . . . .  ) did not depend on the 
derivatives of ~b/s. Then with appropriate differentiations of (3.4) [compare 
with (2.1)], we can achieve 

T'Four(X,  y . . . .  ) = S* (g) (  T*  Fi,,(x, y ,  . . .) ) S ( g )  (3.5) 

Clearly, relations (3.4) and (3.5) imply each other; this can be seen by, say, 
using (2.9) in (3.5) and carrying out pure noncovariant contractions that 
are generated by T2 ~ . Because of the unitarity of the S matrix, these pure 
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noncovariant contractions are the same on both sides of relation (3.5) [com- 
pare with (2.21)]. Finally, using covariant T* contractions, which, because 
of the unitarity of the S matrix, are the same on both sides of (3.5), we 
expand both sides of (3.5) in terms of normal-ordered products; this clearly 
implies relation (3.3). 

After these preliminaries, we now turn to the formulation of the covari- 
ant PDECC for the S matrix and the interpolating fields. The way one 
usually defines the interpolating field ~b (x) is through the relation 

~b (x) = S t (g)  T(S(g)c~in(x)) 

where clearly ~b ~ ~bi . . . .  t as t~ ~ -oo,  + ~ .  However, since the T product is 
not generally a covariant quantity, this definition may yield a noncovariant 
~b(x). Therefore, we start with an explicitly covariant definition for the 
interpolating field as 

~b (x) = S*(g)T*(S(g)q~i,,(x)) (3.6a) 

= S*(g) T*(S(g); Ckin(x))S(g)~i,(x) (3.6b) 

where in (3.6b) we took into account relation (2.30) and we assumed that 
the S matrix is expressible either as a T or T* product, so that T ' S =  S 
[compare with relations (2.14) and (2.15)]. Since S ( 0 ) = I ,  we have the 
important relations 

q~in(x) = q~ (x)Ig = 0 (3.7a) 

c3~bi"(x) = 0 (3.7b) 

Next, with ~bi~"(x), ~b~"(x) . . . . .  denoting specific fields, we look at 

St  (g) T* S(g)dp?(x)Jp~z"( y) 

= T*(~b~j"(x) ; ~b~n(y))S*(g)T*(S(g) ; ?p~'(x))S(g)dp~l"(x) 

x S*(g)T*(S(g); dp~2"(y))S(g)~z"(y) (3.8a) 

= T*(q~(x);  q~"(y))~b,(x)q~2(y) -~ T*q~,(x)~b2(y) (3.8b) 

where in (3.8a) we took into account relations (2.30)-(2.32), the fact that 
T ' S =  S, inserted SS t = 1 between T*(S; q~?) and T*(S; r and acknowl- 
edged relations (3.6). Here we interpret all T*'s as covariant time-ordering 
operators [see the discussion after relations (2.30)-(2.32)] ; this allows us to 
pull T*(~bij" ; ~bi2 ") all the way to the left. It is obvious that if in (3.8a) we had 

in in started with T ~bj (x)4J2 (y), the result would have been the same. 
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If  in relations (3.8) we start with 0 , , .  ""  0 '"kin(x'~ ,.~,~ t ) and 
0 in 0~" �9 " ~,~b2 (y) instead of  with ~b~n(x) and ~bi~n(y), we obtain 

T * O m ( x )  ~ " " d u , ( x ) g b l ( x  ) O ~ ( y )  . . . O~,,(y)dp2(y) 

= S * ( g ) T * S ( g )  O n , ( x )  in ~ �9 " �9 Ou.(x) ~, (x) Ov,(y) (3.9)  �9 �9 �9 Ov,,(y)qb2 ( y )  

On the other hand, we can differentiate directly relations (3.8). Then consist- 
ent with (2.1), we see that in general the definition of  the T* product for 
interpolating fields is 

T * ( O m ( x )  . . . O m ( x ) d p , ( x  ) t3~,(y) . . . Ov,~(y)dp2(y) " " ") 

= (O,,,(x)...O,,.(x)),(O~,(y)...Ov,,,(y))2... T*(cb,(x)r (3.10) 

where the indices attached to the derivatives indicate the fields on which 
these derivatives act. With [compare with (3.21)]  

F ( x ,  y ,  . . .) 

= F(~b(x), Omq~(x ), OF,,a~,2q~(x) . . . . .  dp (y ) ,  O~,dp(y),  O~ ,O~2dp(y ) , . . .  ;g) 

(3.11) 

from (3.13) we obtain easily by induction 

A ( x )  = St(g) T *  S ( g ) & . ( x )  

AAx) =A(~Ax), ~,~Ax), 0,0~Ax),... ;g) 

A(x) =A(~(x), 0,~ (x), O,~Ov4)(x) . . . .  ;g) 

T*A(x)=A(x)  

(3.14a) 

(3.14b) 

(3.14c) 

(3.14d) 

the generalization of  relations (3.8) and (3.9) is 

T * F ( x ,  y , . . . )  = St(g) T * ( S ( g ) F i . ( x ,  y . . . .  )) (3.12) 

Now let us look at 

S t ( g ) T *  S(g)qSi , , (x)  OuOvgpi,(x) 

= St(g)T*(~bin(x); ~ u ~ v q ~ i , , ( x ) ) T * ( S ( g )  ; (pin(x))S(g)dPin(X) 

x St(g) T*(S(g) ; duOvCbi , (x ) )S(g  ) O~,O,,4Jin(X) (3.13a) 

= ~b (x) Ou0~b (x) (3.13b) 

Here we took into account that T*(~bi,(x); cquO~dp(x))= 1 [compare with 
(2.34)] and that T * S = S ,  have inserted S S t =  1 between T*(S; ~bi,) and 
T*(S; c~uO~q~i,), and, of  course, took into account relations (3.6). Clearly, 
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where relation (3.14d) follows by comparing (3.14a) with (3.12). It is 
obvious that relation (3.14d) is a direct consequence of T * A f ( x ) = A s ( x  ) 
[relation (2.34)]. 

Finally from relation (3.12), we have the following important special 
case: 

S ( g ) T * ( F ( x ) G ( y )  . �9 .)  = T * ( S ( g ) F ~ . ( x ) G i , ( y )  . . . )  (3.15) 

where F, G . . . .  (Fin, Gi . . . . .  ) depend locally on ~b's (~bi,'s) and their 
derivatives. 

In order to ensure the unitarity of the S matrix, the PDECC for it is 
taken to be (Loin, 1973) 

1 o__ f. 
S(g) = S(g) | d 4 x  s  (3.16a) 

i Ogi .1 

= fd4x T*S(g),,oq~'*in(X) (3.16b) 

where (3.16b) is the consequence of applying (3.14a) to (3.16a), and where 
[compare with (3.1)] 

a* a* 
~(X) ~gl  '~(X) ----~gi ,-,~int(X) 

~ % ( x )  - -  ~ * ( x ) l ,  = ,,~ 
(3.17) 

The "star" partial derivative acts as an ordinary derivative on the coupling 
constant-dependent coefficients that multiply ~b (x), 0uq~ (x) . . . . .  or ~bf(x), 
c3u$f (x  ) . . . . .  in such a way, however, that 

O* q~ (x____~) = O, O* ~t(x___._~) = 0 (3.18a) 
ag, ~g, 

=0 (3.18b) 

A simpler version of the PDECC for the S matrix is obtained if we "freeze" 
the physical coupling constants in ~ i , t .  Their place is now taken by a single 
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"mathematical" dimensionless coupling constant A,, which is varied between 
0 and 1. Relations (3.1a) and (3.16) are now written, respectively, as 

~La(X) = ,~0(X) + ~..~int(X) (3.19) 

! 
S(s = ['d'x S(s  (3.20a) 

.J 

= fd4x T*S(g).LPI~t(x) (3.20b) 

Of course, the solutions of (3.16) and (3.20), as we shall see later, are fully 
compatible with each other. 

Next, in order to show the correctness of T/Af(x)= As(x ), s = • 1, we 
now specialize -~'i,t as 

~-~int(X) = .~int(~b (X), 0.u~b (X); g) (3.21a) 

However, from the PDECC in conjunction with the canonical formalism 
(S61n, 1973) (see also Appendix C), we have 

1 dg(z)=rd4x TS(/~)..~int(~in(X), (0p~(X))in ;g) (3.21b) 
id)~ .I 

In Appendix C we show that 

5r (Ou~b (x))i, ; g) = ~,t(~b~.(x), 0u~b~,(x) ; g) + O(Z) (3.22) 

which, after equating (3.21b) with (3.20b) at A,=0, yields 

,-~int(~in(X), 0.u~in(X) ; g)~--" Tn~CPint(~in(X), Ou~bin(X) ; g) (3.23) 

where T= T*T, was taken into account. Relation (3.23) is also obtainable 
from more general relations (at ~= 0) that connect interaction Hamiitonian 
and Lagrangian densities and which will be discussed in Section 4. Relation 
(3.23) is automatically satisfied if ~"~int is in a normal form [compare with 
(2.18)]. However, 5r is not always written in a normal form; an example 
is a chiral invariant Lagrangian (S61n, 1973; Gerstein et al., 1971 ; Weinberg, 
1968). Thus, in general, (3.23) implies relation (2.36a), which is consistent 
with the dimensional regularization. In turn, dimensional regularization 
implies also relation (2.36b), which, together with (2.36a), implies 
T, SAi(x) =As(x), s = + 1, for any local free field function As(x ) [relation 
(2.35)]. As we see, the requirement that the S matrix be simultaneously 
described with the explicitly covariant PDECC and the PDECC that 
incorporates the canonical formalism essentially requires relations (2.33)- 
(2.36). 
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Next we write down the covariant PDECC involving the S matrix and 
arbitrary field quantities. Utilizing relations (3.14)-(3.16), we have 

1 0 
- - -  S ( g ) T * F ( x ) G ( y ) .  �9 �9 Q(z )  
i Ogi 

1 0 
- T * S ( g ) F i n ( x ) G i n ( y ) ' ' "  a in(z)  (3.24a) 

i Ogi 

= ]a4w S ( g ) T * F ( x ) G ( y ) "  �9 . O(z)~LP*(w) 

+S(g)T* 1 8" z - - - F ( x ) G ( y ) "  �9 �9 Q(z)  (3.24b) 
i Og, 

where relations (3.15)-(3.18) and (2.27) were taken into account. Relations 
(3.24) immediately yield the covariant PDECC for field quantities 

1 O 

i agi 
- - -  T * F ( x ) G ( y ) "  �9 �9 Q(z )  = f d 4 w  { T * ( F ( x ) G i y ) "  �9 �9 Q(z )&e*(w) )  

- 5 ~ * ( w ) T * ( F ( x ) G ( y ) .  �9 �9 Q( z ) )  

8" 
+ T*  It ~ ( F ( x ) G ( y ) . . .  O( z ) )  (3.25) 

In order to write down the explicitly covariant expression for the S 
matrix, let us look at 

( 1~2 02 fa4xd4y S ( g ) T * s  7) s(g)= 

I f  2* "-}--T d4x S ( g ) ~ i d ( x )  
l 

(3.26) 

where we used (3.24a) and introduced the notation 

.. O*"d(x) 
~,, j2.....;,(x) - (3.27) 

Ogi, Ogi2" " " dgi . 

Relations (3.16) and (3.25) evaluated at g = 0 yield the S matrix as a power 
series up to second order in coupling constants. Continuing to higher orders 
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yields the result 

1 I-{ c~*\" ~ g,) l J S(l)=T*exp{ifd4x~,~L~Zg,~)~(x; ] (3.28) 
g" = t,' 

Consistent with (3.7) and (3.1), we can write in (3.28) 

n* n* 
~il  a2,...,;,(x)[g = 0 = ~i .  ,i2 ,...,i,:i, (x)Ig = o (3.29) 

so that the exponent of (3.28) becomes 

. : ,  ~ g, ~ ( x ;  g') .,:0 

= 2 1 2 g i  ff'(x;g')in =<.C~int;in(xlg) (3.30) 
n = l  g ' = 0  

Therefore, the solution of (3.20), 

S(/%)=T*exp[i/%fd4x<.~'int;in(x)] 

= T f  T~i expli/% f d4x .LPi,~t;in(x)]} 

(3.31a) 

(3.31b) 

is also the solution of (3.28) at/%= 1. 
It is clear that in both manifestly covariant expressions (3.28) and 

(3.31a) the S matrix obeys the original Matthews theorem (Simon, 1990; 
Matthews, 1949) to any order in a perturbation theory for Lagrangians with 
arbitrary derivative coupling terms; these results were obtained without 
any reference to the Hamiltonian. Relation (3.3 l b) expresses the explicitly 
covariant S matrix as a T product once pure noncovariant contractions 
have been carried out. 

In order to show that the covariant PDECC formalism properly con- 
nects the asymptotic free-field quantities, using T* = TT~ 1 , we rewrite the 
right side of (3.12) as 

S(g) T* F( x, y . . . .  ) = T{ S(g) T* F~n( x, y, . . . ) + d( x, y, . . . ) } 

d(x, y . . . .  ) = [ T,]-' (S; F~,) - 1]S(g)(T*Fin(x, y , . . . ) )  

d(x, y, . . .)lg=0 =0 

(3.32a) 

(3.32b) 

(3.32c) 
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where we took into account relations (2.20) and the fact that TilT* = T*, 
TflS=S, s = + l  [compare with (2.24)]. We notice that as a result of pure 

/ 
noncovariant contractions [compare with (2.3) and Appendix A] between 
the S matrix (expressed as a T* product) and T'Fin(X, y , . . . ) ,  the quantity 
d(x, y . . . .  ) (unless identically equal to zero) generally contains adiabatic 
factors e(x), e ( y ) , . . . .  Of course, these adiabatic factors will switch off the 
coupling constants in the infinite past and future (g ~ 0), which, in view of 
(3.32c), implies 

d(x,y . . . .  ) ~ 0  as t~,ty . . . .  --.Toe (3.32d) 

where in these limits the difference between any two times is finite. Now 
expressing the S matrix as a T product [relation (3.31b)], from (3.32) we 
obtain the identity ST*Fi,(x, y , . . . )  = ST*F~,(x, y . . . .  ) at ix, t y , . . .  = -oo  
and the relation (3.5) at t~, ty . . . .  =+oo.  Asymptotic relations (3.3) and 
(3.4) are simply consequences of (3.5) [see the discussion after (3.5)]. This 
shows that the covariant PDECC formalism relates properly all asymptotic 
free-field quantities. 

Let us illustrate the properties of d from relations (3.22) on a model of 
a neutral scalar field or(x) with mass m interacting with symmetric tensor 
juv(x) depending on fields different than or(x): 

..,~o(X) ---- -- l[(6~p O'(X))(O 'u O'(X)) + m20"2(x)] (3.33a) 

�9 .qCi.t(x) = e(x)gj, ~(x) t?"OVcr(x) (3.33b) 

where we introduced explicitly the adiabatic factor e(x). Here we wish to 
study the asymptotic properties of the energy-momentum tensor for just the 
tr field. We start with Tf, V(x), determined from 5eio"(X) to be 

T~nV(x) = :t~V(x) �9 
t I V  ti, (x) - �89 u cri,(x))(avcri,(x)) + (0vO'in(X))(0 u O'in(X))] + gU vSe~" (X) 

t ~ ( x )  = t~#(x) 

(3.34a) 

The interpolating T~'~(x) is given as 

S(g) T"V(x) = T*S(g) T~,V(x)= T{S(g) T~n~(x) + d~(x)}  (3.34b) 

Now we wish to find whether 

d""(x) = [T~'(S; T~, v) - 1]S(g)T~(x) (3.35a) 
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vanishes as tx ~ 4- oe, where we take into account 

T f l S = S ,  ~ u v  _ T .  T~, (x) - TV, J ( x ) ,  s = 4-1 

Evaluating (3.35a) to O(g) by utilizing [OoOaorin(Y)'OuO'in(X)'] n 
Appendix A, after some work we obtain 

d ~ V(x) = ge(x) { [94 T*jo,,(x)l[nPn"(nUO ~ + n~O ") 

+ gUV nPn"O,lori,(x) + [dkT*jp,,(x)][nPn<'(g~ + gY,) 

+ (n u + n~)(nPg~ + n~g~) +g" V(nPg~ + n<'g~) 94 

-- g" ~ nPn"Ok]ai,(x) } + O([ge(x)] z) 

from 

(3.35b) 

where it is clear that adiabatic factor e(x) appears also in higher order terms. 
Consequently, ( 3 . 3 5 b ) ~ 0  as tx--* Toe; this gives from (3.34b) [compare 
with (3.3)] 

S(g) ToU~t(x) = T.UmV(x)S(g) (3.36) 

where uv Tout is given by (3.34b) with ori, replaced by trout. Of  course, we can 
continue this study and, as an example of  nonlocal observables, we could 
study the nonlocal currents (S61n, 1968). Again one would find that the 
adiabatic factors assure the correct relationships between in and out observ- 
ables. Therefore, we can say that the explicitly covariant S matrix describes 
the entity of  all possible results of  measurements at the infinite future when 
the state of  the infinite past has been specified. Let us point out that in our 
formalism an observable is a constant of  motion only if [O~,, S] =0. Here 
T u v is not a constant of motion, since it is the energy-momentum tensor for 
the or field only. 

Finally, we discuss the interpolating fields themselves. For a Lagrangian 
density with higher derivatives, one can write the generalized Euler- 
Lagrange equation 

02'(x) O (x) 0 e(x) 
- - -  0~, - -  + 0~0~ . . . .  0 (3.37) 

ooze(x) oo ovr 

On the other hand, setting F =  r G . . . . .  Q =  0 in (3.25), we obtain 

0g--~ r  d4y [ T * ( r  s (x)] (3.38) 

The solution of  (3.38), of  course, is given by relations (3.6). Are relations 
(3.6) also the solution of the Euler-Lagrange equation (3.37)? We believe 
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so. From (3.9) and (3.19) (with 2 ~  1), we can write 

(x) = St(Z) T*S(2)r 

=d~i,(x)+i2fd4y , in i, [T (,LP'int(Y)~bin(X))- ~in(X) c~C-q'int(y)] 

+ 0(22) (3.39) 

NOW applying (3.39) to the tensor derivative coupling from (3.33b), as an 
example (with 2= 1 and remembering that juv depends on fields different 
than a)  we obtain 

o'(x) = o'i,(x) + ig f d4yjf.V(y) O,(y) Ov(y) 

x [T(ain(y)cri,(x)) - ai,(Y)ain(X)] + O(g 2) (3.40a) 

a~.(x) +g f d4y AR(x -y)(Ouaj~(y)) + O(g 2) (3.40b) 

where derivatives were pulled to the left of the T* product [compare with 
(2.1)] and two partial integrations were carried out. [Utilizing (3.40b), one 
easily verifies that indeed cr2(x)= St(g)T*S(g)Cr~n(X), as expected from rela- 
tions (3.14)]. Next from (3.37) we have exactly 

a(x) = ai,(x) +g fa'y AR(x-y) OuO~j'~(y) (3.41) 

Now if in (3.41) one further solves Euler-Lagrange equations for fields on 
which ju~ depends, one gets j~,v plus O(g 2) terms, which we believe are the 
same as the O(g 2) terms in (3.40b). Consequently, we conjecture that the 
solution for ~b (x) as given by (3.39) is consistent with generalized the Euler- 
Lagrange equations (3.37). In any case, we can always accept (3.38) with 
its general solution (3.6a) as a covariant definition of the interpolating 
field ~b (x). 

4. GENERALIZED HAMILTONIAN DENSITY AND A 
FEW EXAMPLES 

Relation (3.31b) suggests writing the S matrix in the Dyson form 

S(2)= Texp[-i f d4x ~. innt(X)] (4.1) 
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where 

f d'~x~~ expEiZ f d4x,LPi~t(x)]t (4.2) 

where the limit ;t ~ 1 is understood after having done pertinent calculations. 
Relation (4.1) simply defines the generalized interaction part of the Hamil- 
tonian density in terms of ~bi., 0u~bi,, 0u0vq~in, etc., for any ,~int. 

When ,-~int is in usual form (3.21a), then taking into account (3.21b) 
(see also Appendix C), we have 

d --~r162 =-~i.t(~bi.(x), (Ouq~ (x))i. ;g) (4.3a) 
d;~ 

exp{i fo~ dZ f d"x ~,,,t(~,,,(x), (O.q~(x)),.;g)} 

=T2'exp{iXfd4x~,.,(4~i,.(x),O,,r (4.3b) 

We see that relation (4.3b) is an identity at ~=0.  If we apply d/dA on both 
sides of (4.3b) and evaluate the result at ~.=0, we obtain relation (3.23). In 
general the left side is known from the PDECC and the canonical formalism 
(as we shall show shortly in the example of a chiral invariant Lagrangian). 
The action of T~ -j on the right side of (4.3b) has to make it equal to the left 
side. Generally, this equality is impossible without 64(0) = 0. [In special cases 
such as the chiral-invariant Lagrangian (S61n, 1973; Gerstein et al., 1971), 
one is able to add to ~int counter terms containing 34(0) which, in turn, 
cancel contributions with 34(0) from the action of T~ -~.] Namely, 34(0) terms 
do not arise only from the local pure noncovariant contractions {e.g., from 
[Of, cri.(x)" 8v(ri.(x)']"}, but also from the nonlocal ones when the integrals 
cannot "eat" all the delta functions, as in this example: 

f d4x d4y �9 �9 " ~4(x-y) 34(Y-X) = 64(0) f d4x. 
Since a term like this is clearly not present on the left side of (4.3b), it 
has to vanish, which, however, was already demanded independently by 
relation (3.23). In other words, 64(0)= 0 is sufficient to verify the whole of 
relation (4.3b). 

Now we go to some specific examples. The first example is the case 
of the chiral-invariant Lagrangian density of massless pions (S61n, 1973; 
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Gerstein et al., 1971) 

~e(x) = - ~-0, .a(x) G.~(4' (X)) Cb" (X) 

r = O. Co(X) 
(4.4a) 

where ~ba(x) denotes the pion field. The dependence of Gas on the pion 
field is determined by the requirement that L~' be SU(2) • SU(2) invariant 
(Weinberg, 1968); different SU(2)x SU(2) nonlinear-representation assign- 
ments for ~ba require different G's (Gerstein et al., 1971; Weinberg, 1968). 
We write (S61n, 1973) 

Gab(x) = 8,,6 - ZGab(r (X)) 

A, 
z~ . , ( x )  = ~ 0.  ,o(x) ~b(4, (x)) r 

(4.4b) 

(4.4c) 

where the physical coupling constant is absorbed in (~. We now evaluate 
pure noncovariant contractions in (4.2), 

f ~Piint(x ) d4x=iln {1 + i)~ f d4x ,.~iint(x ) 

+s f ,x 2 3 d~y [-selXt(x)~iX,(y) 

+ �89 - y)(n~) ~ Tr ~(r 

�9 p v in --2 in } - t f 4 ( x - y ) n  n d~u.a(x)G,,b( q~i.(x))dA,,b(X)] + 0(2 3) 

; } p v in --2 in 
+ -  n n r  ~ . ( x )  ) r  + O(Z ~1 

2 

Here, consistent with relations (2.36a), 64(0) is set to zero. The nth term in 
this series is easily deduced to be 

~n P v in --n in 
- -  n n r 
2 



Per turba t ion  Theory with Higher Derivative Couplings 603 

so that the result is 

g v 
in in n n in 

ae~.,(x) = -zLe~.,(x) + T r176 

X [ l ' ~ ~ )  ] .bdP~nb( X ) (4.5) 

Result (4.5) has to be consistent with (4.3a), which follows from the 
canonical formalism. To prove this, consistent with (4.4a), we start with the 
canonical momentum Jr. conjugate to ~b., 

try(x) = [ 8.b- A(~b(r (x))] d~4,b(x) (4.6) 

Since 

in X in ~ra ( ) = ~ 4 , a ( x )  = [~ab  - -  ~ O a b ( ~ b i n ( X ) ) ] [ ~ 4 , b ( X ) ]  in 

in __ in 
t~r ,a (X)  - -  [~)r ,a(X)]  

we then have in general 

[  4.7, [r in = v - nun v 1 - ~(~(~i.(x)) ~,b 

By taking into account that G=  O r (T stands for "transpose" in unitary 
space), direct evaluation gives 

~.,(r [4r176 ;g) 

=-�89 Fdub(4~~ 

= - gq)u,,A,x) 

ab 

l ~ ] )  in 
- , i ' | ~  ckv.b(x) (4.8) =-~qSi~'"(x){GIg~V +nUnV(1 (l-y)/JJab 

where y=2(~(~i,(x))  and G=  G(c~.(x)). Differentiating relation (4.5) with 
respect to &, one obtains at once the negative of relation (4.8). 
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The S matrix for the chiral-invariant Lagrangian density 
(4.4)] becomes explicitly 

S(~) = T* exp{i Id4x ~- ~piU~a(x)Cr,~b(C~i,(X))~p~'b(x)} 
3 2 

[relations 

(4.9) 

This expression does not have the counterterm with 64(0) (now equal to 
zero) which was introduced earlier (S61n, 1973; Gerstein et al., 1971) to 
explicitly eliminate the worst divergences in the perturbation theory which 
violate the Adler condition for ~r-Jr scattering. However, it is again the 
dimensional regularization that takes care of  the Adler condition. For 
example, it can be shown (Tataru, 1975) that all one-loop diagrams in the 
soft-pion limit (i.e., when all external momenta are zero) contain t~4(0) and 
therefore are vanishing in the framework of  dimensional regularization; 
therefore, one can say that the Adler condition is automatically satisfied in 
the one-loop approximation with this regularization. We believe that relation 
(4.9) provides the proper expression to all orders of  the perturbation theory, 
providing that dimensional regularizations are employed for diagrams. 

The previous example, although quite complicated, allowed us to define 
the Hamiltonian density canonically in the usual manner. As such, it served 
as a verification for the expression of the generalized Hamiltonian density 
from the covariant PDECC formalism. When 50~nt contains higher deriva- 
tives, as mentioned, it is possible to remove the second and higher time 
derivatives from 5 ~ by carrying out either covariant or noncovariant field 
transformations (Barua and Gupta, 1977). However, as a rule the resulting 
Hamiltonian density is seldom in a simple form. As a consequence, the 
Dyson form of the S matrix is also very complicated. In fact, we can see this 
also within the covariant PDECC formalism in the example of  the derivative 
tensors coupling from (3.33b). We shall assume for simplicity tha t j  "v, which 
depends on fields different than or, also does not depend on field derivatives. 
Then applying relation (4.2) (at A,= 1) to 50i.t from (3.33b), we obtain 

in __ in /). ~ i . , ( x ) -  (T ,  i i, i. -50int(x) - - 1) d4y 50i.t(y)50i,t(x) + O(g 3) 

= - 50~i~',t(x) - g2j~nV(x) { [n~n vgkg/+ 2n, n~gfga,]OkOt 

+ 2n~nvnagflkoko4 1 2 + -~n, n vn ant~ ( 04 -- V 2 -- m 2) }j ~f (x) 

+ O(g 3) (4.1 0) 

where the pure noncovariant contractors from Appendix A were taken into 
account. Clearly, even to O(g2), ocfi,"t is rather complicated. The S matrix in 
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Dyson form with this ~.ufi,"t [valid only to O(g2)] becomes also rather com- 
plicated. This should be contrasted with the equivalent covariant S matrix, 

S(g)=T*exp[igfd4xj~V(x)O~,Ovcrin(x)] (4.11) 

which is straightforwardly simple, unitary, and valid to all orders in g. 

5. DISCUSSION AND CONCLUSION 

By employing the covariant PDECC formalism, we have developed the 
covariant perturbation theory for the S matrix and the interpolating fields 
when the coupling terms in the Lagrangian density involve arbitrary (first 
and higher) derivatives. The remarkable thing is, however, that this theory 
was formulated directly in terms of the Lagrangian density without any 
reference to a Hamiltonian density, which, for a higher derivative Lagrang- 
ian, is generally very difficult to obtain (Barua and Gupta, 1977). The 
advantage of this approach is evident if one considers the symmetry proper- 
ties of the system, which are usually expressed through Lagrangians. 

Of course, it was the introducion of the (purely) noncovariant T /  
(s= ~1) products that allowed us to avoid the Hamiltonian density altog- 
ether. In fact, we have turned things around and, as shown in Section 4, with 
the help of the 7", -~ product defined the generalized Hamiltonian density. 
Furthermore, it is T~ -I that brings T to the left in T* (T* = TT~I), and as 
such allows us to interpret T* as a covariant time-ordering operator. This, 
in turn, facilitates definitions of interpolating field quantities and shows that 
the explicitly covariant S matrix correctly relates in and out observables. 

A rather gratifying fact is that, from the requirement that the S matrix 
from a canonical formalism coincides with our explicitly covariant S matrix 
for Lagrangian densities with first derivatives, we obtain 84(0)=0 [and, 
through the dimensional regularization, also (O,,0m. .- 84)(0)=0]. That 
84(0) should be set to zero (within the dimensional regularization) has been 
found already in Bernard and Duncan (1975) and Barua and Gupta (1977). 
There for Lagrangian densities with higher derivatives, it is possible to con- 
struct covariant S matrices with the help of Hamiltonian densities if 84(0) = 
0. However, in these cases one has a chance to demonstrate the validity of 
Matthews' (1949) theorem mostly to low orders in the perturbation theory 
(Bernard and Duncan, 1975; Barua and Gupta, 1977). In contrast, explicitly 
covariant expressions (3.28) and (3.31a) for the S matrix make Matthews' 
theorem correct to all orders of the perturbation theory. 
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Let us point out that even for the case of (second) derivative tensor 
coupling (3.33b), the calculated ~i,"t, although complicated, is still a local 
operator, as can be seen from (4.10). Consequently, even in the original 
Dyson form, (4.1), the S matrix is conventionally unitary, as opposed to 
nonlocal interactions, where the S may become nonunitary (Hata, 1989). 

APPENDIX A 

In this Appendix we give a few examples of  pure noncovariant contrac- 
tions. In these examples, the free field is a scalar (or pseudoscalar) field 
~b 7 (x), f =  in, out, and a is some internal index. Consistent with (2.4) and 
(2.8a) for two free multiderivative fields, the T product can be written as 

T 1/2/= T*er~qi2r= T* Is2/+ Nslr2s (A1) 

where, because sYx-lI2 i is a c-number, T*sVFlf2)= NslI2/. As a consequence 
of  (A1), the pure noncovariant contraction of  two free multiderivative fields 
is numerically given as 

Nl(amc~.~..- ~b/~ . . .  ~b/b(y)) 
. . . . &(y)']" 

= < O ; f l ( T -  T*)(0md., �9 �9 �9 ~ / ( x ) )  

• (0v,0v2" �9 �9 4bJ'(y))10;f> (A2) 

Relation (A2) yields the following pure noncovariant contractions 
[compare also with Barua and Gupta  (1977) and ~oln (1973)] 

[q~/(x)'q~ (y) ']" = 0 (A3) 

[a. 4b 7 (x)'q~r b (y)" ]" = 0 (A4) 

[a. ~ /  (x)" a.(bsb (y)" 1" = -inunv 6o6 ~4(x-  y) (AN) 

[O.O~c~ (x)'~p ( y)']"= invnv 6.b 64(X--y) (A6) 

[auO.~bf" (x)" ap~b/b (y)']" 

=-i6.b{n.n,,np O4(x) 64(x-y) 

+ (n.n~g/+ nunogj+ nvnpg~/) O~(x) 64(x-y)} (A7) 
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[0 u Ovgpf (x)" OpO,.d?~ (y)']" 

= iS,,b { (npn,.g ig~ + n ~n,~g/g 

+ n ~npg,/gff + nun .go'gJ 

+ nunogvig~ + nun,~gvlg/) O,(x)Oj(x)•,(x - y) 

+ (npn,,,n,,gui+ n,.n,~nug i 

+ n,,npnugj + npn,~nugv i) Oi(x)O4(x)S4(x- y) 

+ nunvnpn,~[OZ(x) + ae(x) Oi(x) -m2]~54(x-y), etc. (A8) 

where m is the mass associated with the field ~bfl (x). As one sees, although 
straightforward to evaluate, the complexity of  pure noncovariant contrac- 
tions increases with the number of  derivatives acting on the free fields. The 
exponential representation of  the 7", product helped to give a precise defini- 
tion of  pure noncovariant contractions. Actually, Nyeven can be given explic- 
itly in terms of  bilinear functional derivatives with respect to multiderivative 
free fields, which, however, due to the lack of  space, were not used here 
(goln, 1990). 

APPENDIX B 

In the scheme of  dimensional regularization, the integrals in the momen- 
tum space are evaluated in n dimensions rather than four dimensions. Here, 
the n-dimensional "Minkowski" space has one timelike and n - 1 spacelike 
dimensions ('t Hooft  and Veltman, 1972). From 't Hooft  and Veltman 
(1972) we have the following equations for arbitrary n" 

f 1 __ i T g n / 2 ( m 2  - -  k 2 )  n / 2 -  ~F(a - n/2) 
d'p (p2 + 2kp + m2) ~ F (a )  

f 1 0, d'p (p2)~ 

 fd'>=0 
f d"p. P~' 

(p + 2kp + m2) '~ 

~ f d"p Pl, =f~ ( p 2 ) ~  v ,  

~ f d~'p p~, = 0  

n/2 > a 

_ iz"/2(m 2 - k2) "/2- ~F(a - n/2) 

r(a) 
?/ 
- > a  

2 

(BI) 

(-k ~) 

(B2) 
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Following 't Hooft  and Veltman (1972) by differentiating the first relation 
in (B 1) arbitrarily many times with respect to k, we end up with 

f p~,Pvpx" " " pp _ i l r n / 2 ( m 2  - k 2 )  n / 2 -  a 

d"p (p2 + 2kp + mE) ~ F(a)  t,  v~...p (B3) 

where the tensor t,~z...p is made up of vectors k , ,  kv, kz . . . . .  kp, and of 
metric tensors gu~, g~z, g~x . . . . .  and, of course, depends on m 2 and k z. 
From dimensional arguments we see that the dependence of tu~x.., on m 2 and 
k 2 is such that t ,  vz... is well behaved when mZ--* 0 and k 2 ~  0 (where, while 
taking the limits k" ~ 0 and m 2 ~ 0, we keep the ratio k2/m 2 fixed). Conse- 
quently, using procedures similar to the ones from (B1) and (B2), we con- 
clude that 

f d"p p ,  p~p~ . . pp (B4) B 0 

Relations (B1), (B2), and (B4) imply 64(0)=0 and (0~,0~.  �9 �9 OpS4)(0) = 
0, which are the same as relations (2.36). 

A P P E N D I X  C 

To explain relations (4.3a) and (3.21) within the framework of the 
canonical formalism, following ~oln (1973), we define the prime partial 
derivative with respect to the coupling constant gi, ~'/Ogi, with the properties 

0' 0' 
Og---~ ~(x)  =0, ~g/~(x)=  0 (C1) 

where ~ is the canonical momentum conjugate to q~. By taking into account 
that rc can be expressed in terms of ~b, Or~b, and ~ and as such may explicitly 
depend on g;, taking into account (3.18), we have 

0* 0' ~*Jr 
- ~Z (c2) 

Ogi Og~ Ogi Ozr 

With OYf/t3zr = - ~ ,  we then have 

O*Jg t3 ' oeg 0*zr 
~' q ~ -  (C3) 

agi ag, ~ Ogi 

which, when combined with A ~  rcq~-~ ,  yields (~oln, 1973) 

0 ' ~  0*A ~ 
- ( C 4 )  

ag~ ag, 
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By writing a f  = .r162 + ocg+.t and s 2~'o +/~'-~int, where Jg0 is the free part 
of  the Hamiltonian density, varying the mathematical coupling constant ~L 
between 0 and I while freezing the physical coupling constants [compare 
with (3.19)], and taking into account that d'o~o/d)~=O, from relation (4), 
with g~=,~, we obtain 

d'J~int(X) 
- ~ . , ( x )  ( c 5 )  

d2 

where 

and 

~ . , ( x )  = ~i . , (q~ (x),  ar4' (x),  7r(x) ; Z; g) 

�9 ~int(x) = ~int(l~ (X), Op ~ (X) ; g) 

Now taking the tx --, - oe asymptotic limit of  (C5), we have 

d'~i".,(x) 
= -L,e~,t(~bi,(x), (OuCh (x))i, ; g) (C6) 

d)~ 

where ~]~t(x) = XCi.,(~bi,(x), 0r~bi,(x), ~ri,(x); A,; g) and we took into account 
that d~ri,/d)c=O. Relation (C6), which is the same as (4.3a), explains (3.21b) 
if one differentiates (4.1) with respect to Z. 

Next, to demonstrate (3.22), we take ~b(x) to be a scalar field. Then 
from (3.19) we have Jr=q~+2 O,~~ which, after we take the t~-- , -oo 
limit, yields 

(a,, 4, (x))~. = a . , ~ . ( x )  - ~.n. 

~,-~int(~bin(X), (~p~ (.X))in ;g )  
x O(q~(x))i, (C7) 

where we took into account that rc~. = q~,,. This gives 

�9 -~int(q~in(X), (0u~ (X))in ;g)~---~int(~in(X), ~p~bin(X) ; g)-~- O(/~) (C8) 

which is the same as (3.22). 
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